
When chatbots breed 
new plant varieties
Generative Artificial Intelligence and  
New Genetic Engineering Techniques



Publisher:

Save Our Seeds / Foundation on Future Farming

Marienstr. 19-20

10117 Berlin

Phone: +49 30-28482326

Email: info@saveourseeds.org

Author: 

Benno Vogel 

www.bennovogel.eu 

Cover and Design: 

Beatriz Francisco 

www.linkedin.com/in/beatriz-francisco/

Publication:

January 2025

http://www.bennovogel.eu
http://www.linkedin.com/in/beatriz-francisco/


Save Our Seeds    |    When chatbots breed new plant varieties

Contents

List of abbreviations

1. Introduction

2. Big Data – the raw material for generative AI

2.1 Genomes, pangenomes and super-pangenomes

2.2 Omics techniques for single cells now available

2.3 Google Maps for plants

3. Generative AI for NGT 

3.1 Large language models: research assistants for NGT plant breeding 

3.2 Generative AI trained on proteins

3.3 Generative AI trained on genomes

3.3.1 GPN, FloraBERT and AgroNT – the first language models for plant genomes

3.3.2 Will AI-designed genomes soon be possible?

3.4 Multimodal tools - on the way to supermodels

3.4.1 CropGPT for Breeding 5.0

4. AI applications in NGT-based breeding research

4.1 AI tools for efficient and precise genome editing

4.2 Regulation rather than knockout: generating quantitative trait variations

4.3 NGT breeding with protein redesign

4.4 SynEpi and epigenome editing

4.5 Automation

5. AI, NGT and corporations

5.1 AI applications in seed companies

5.2 AI for NGT offered by tech companies

6. AI applications in small and medium-sized enterprises

6.1 CRISPR AI start-ups for gene regulation

6.2 Plant breeding with AI & RNAi & CRISPR

5

6

7

8

9

10

11

11

12

14

15

16

17

18

18

19

20

21

23

23

24

24

25

25

26

29



Save Our Seeds    |    When chatbots breed new plant varieties

Contents

6.3 AI from Google and ‘boosted breeding’

6.4 Simulation of over 69,000 editing strategies

6.5 Searching through the genomes of wild plants

6.6 Protein design for plant breeding

6.7 Start-ups with self-made NGT tools

6.8 First startups with robot compatible plants

7. Generative AI and regulation of NGT1 plants

7.1 General regulatory aspects

7.1.1 Generative AI lowers the skill threshold

7.1.2 Generative AI increases productivity

7.1.3 Generative AI provides new tools

7.1.4 Black Box

7.1.5 Hallucinations

7.1.6 Data distortion and lack of logical understanding

7.1.7 Speed and future-proofing

7.1.8 Corporate power

7.1.9 ‘Open-washing‘

7.2 ‘Google Crops‘ scenario

7.3 The design space for NGT1 plants

7.4 Risk assessment of NGT1 plants

7.5 Labelling of NGT1 plants

7.6 Traceability of NGT1 plants

Glossary

References

29

30

30

31

32

32

33

34

34

35

35

36

37

37

37

38

38

39

41

43

45

46

47

57



5

Save Our Seeds    |    When chatbots breed new plant varieties

 

Antimicrobial proteins

Cis-regulatory element

European Union

Gene Editing Induced Gene Silencing

Artificial intelligence 

Small and medium-sized enterprises

microRNA

New genomic techniques

RNA interference

Single-cell RNA sequencing 

small interfering RNA

Upstream Open Reading Frame

 

AMP 

CRE 

EU 

GEIGS 

AI 

SME 

miRNA 

NGT 

RNAi 

scRNA-Seq 

siRNA 

uORF

List of abbreviations



6

Save Our Seeds    |    When chatbots breed new plant varieties

Increasingly, university laboratories, 

start-ups and tech giants such as Meta, 

Google and Microsoft are creating 

generative artificial intelligence 

(AI) tools for biotechnology and 

genetic engineering. They take the AI 

architectures of the diffusion and large 

language models used in chatbots 

like ChatGPT or image generators like 

DALL-E and train them in the ‘languages’ 

of biology – with protein and genome 

sequences. This results in tools that 

are radically changing the way genetic 

engineering is used to intervene in the 

genetic material of organisms. Equipped 

with improved descriptive capabilities, 

the new AI models make it possible 

to simulate the effects of genetic 

engineering on the computer. Thanks 

to their generative capabilities, the AI 

models can even design functional DNA 

and RNA sequences, as well as proteins, 

that evolution has not yet produced and 

that are, in technical jargon, ‘new-to-

nature’.

While generative AI is finding its way into 

genetically-engineered plant breeding, 

the EU is in the process of relaxing the 

regulation of genetically modified plants 

produced using newer methods of 

genetic engineering – methods known 

as ‘new genomic techniques’ (NGT). The 

European Commission presented a draft 

NGT law in July 2023. The draft divides 

those plants produced using genome 

editing that do not contain any genetic 

material from outside their breeding 

gene pool into two categories: genome-

edited plants that contain up to 20 

targeted changes in their genome form 

category 1 (NGT1 plants). Genome-edited 

plants with more than 20 targeted 

changes form category 2 (NGT2 plants). 

As the European Commission assumes 

that the risk profiles of NGT1 plants 

and conventionally bred plants are 

comparable, it proposes that NGT1 

plants be exempt from the requirements 

of GMO legislation and be subject to 

the applicable legal provisions for 

conventionally bred plants. NGT2 plants, 

on the other hand, are proposed to 

remain within the regulatory area of 

GMO legislation.

To enable the EU Parliament and EU 

Council of Ministers to have a well-

informed discussion on the proposed 

legislation covering the regulation of 

NGT plants, the EU Commission has 

provided policymakers with a range of 

documents: an impact assessment, 

case studies by the Joint Research 

Centre (JRC), work by the European 

Food Safety Authority (EFSA) and the 

results of a stakeholder consultation. 

However, what these documents and 

the ongoing political debate on the 

regulation of NGT plants do not take 

1. Introduction
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into account is the convergence of 

genome editing and generative AI that is 

currently taking place in molecular plant 

breeding laboratories. What does this 

mean for the future-proof regulation 

of NGT plants? The question is all the 

more pressing given that the removal 

of precautionary measures such as risk 

assessment and traceability for NGT1 

plants is under discussion.

The fact that the convergence of NGT 

and generative AI has so far played 

virtually no role in the discussion on the 

planned deregulation of NGT1 plants 

led the Save Our Seeds initiative to 

commission this paper. This paper aims 

to provide insight into the development 

of protein- and genome-based diffusion 

and large language models that could 

be used in plant genome editing, and to 

present the regulatory issues raised by 

The fields of genomics, transcriptomics, 

proteomics and metabolomics have 

uncovered an immense wealth of data 

on DNA and mRNA sequences, proteins 

and metabolites of plants in recent years 

(Figure 1).1 For example, 13.82 million 

protein sequences from 342 plant 

species are included in the PlantMWpIDB 

database.2 The PlantExp platform 

the convergence of genome editing and 

generative AI in the production of NGT 

plants.

The information, gathered through 

a literature and internet search, is 

presented in the following order: 

firstly, Chapter 2 briefly presents 

the biological data that are available 

for training generative AI models. 

Chapter 3 describes the development 

of generative AI models trained on 

proteins and genomes that are being 

considered for use in NGT-based plant 

breeding. Subsequent chapters describe 

how research (Chapter 4), corporations 

(Chapter 5) and small and medium-sized 

enterprises (Chapter 6) use AI models 

when they modify the genetic makeup 

of plants. Finally, Chapter 7 highlights 

the questions and challenges that arise 

in the regulation of NGT1 plants.

contains 131,400 whole-transcriptome 

sequences consisting of 572.4 terabases 

from 85 different plant species.3 

Meanwhile, the plant metabolome hub 

PMhub chemically describes 188,837 

different plant metabolites.4 These and 

other data form the raw material that 

allows the development of generative 

AI for NGT-based plant breeding to be 

2. Big Data – the raw material for generative AI 
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DNA Genomics
> 3,500 whole genome sequences 

from over 1,570 plant species

> 131,000 whole transcriptome 

sequences from 85 plant species

> 13.8 million protein sequences 

from over 340 plant species

> 1.4 million spectra from over 

188,000 plant metabolites

mRNA Transcriptomics

Proteins Proteomics

Metabolites Metabolomics

For the successful convergence of AI 

and NGT, plant genome data is essential 

in two ways: firstly, genomic data is 

indispensable for the use of CRISPR, and 

secondly, the data is the raw material for 

training AI tools.

Since the publication of the first  

genome sequence of a plant – 

Arabidopsis thaliana – in 2000, 

technical advances have simultaneously 

drastically increased the speed of 

sequencing and significantly reduced 

the costs associated with it. The 

first sequencing of the model plant 

Arabidopsis genome took ten years and 

100 million US dollars to complete. The 

plant’s genome can now be determined 

within a week for less than 1,000 US 

dollars.5 Since 2000, the sequencing 

of entire genomes has become a 

relatively routine practice, and not only 

for model plants. Reflecting this, the 

amount of genomic data has increased 

dramatically in recent years: between 

2021 and 2023 alone, twice as many 

possible in the first place. Without big 

data, there would be no generative AI: 

modern algorithms need to be trained 

with huge data sets, and are generally 

more powerful the larger the data  

sets are.

Though the amount of data on plants 

is already extremely large today, both 

the quality of the techniques of data 

acquisition and the sheer amount 

of data gathered are set to develop 

exponentially in the coming years.

Figure 1: Omics techniques, their relationship to DNA, RNA, proteins and metabolites, 

and the data gathered from them.

2.1 Genomes, pangenomes and super-pangenomes
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plant genomes were sequenced as in the 

previous twenty years combined.6

In June 2024, the N3 database at 

Zhejiang University in China contains 

3,505 genomes sequenced from 1,575 

plant species.7 At the same point in time, 

the database of the US National Center 

for Biotechnology Information contains 

4,604 plant genomes from 1,482 

species.8 With a number of projects, such 

as Ten Thousand Plant Genomes, African 

Orphan Crops, Genomics for Australian 

Plants and Darwin Tree of Life, currently 

underway in the sequencing of further 

plant genomes, these numbers will 

continue to grow.9 The most ambitious 

goal, however, is being pursued by the 

Earth BioGenome Project, which aims to 

create a reference genome for all known 

animal, plant and fungal species in the 

world by 2030.10

With the advent of high-performance 

sequencing, the number of plant species 

for which a Pangenome is available has 

also increased in recent years. Aiming to 

represent the broad spectrum of genetic 

diversity within a species, Pangenomes 

are based on the genome sequences 

of several organisms within the same 

species, rather than just being based 

on the genome of one organism of that 

species.11 They are intended to help 

in the identification of agronomically 

interesting or desirable alleles that can 

then be transferred to existing elite 

crop varieties using genome editing. 

So far, more than a thousand plant 

genomes are thought to have been 

compiled together for the construction 

of pangenomes. Published pangenomes 

are already available for several 

important crop plants such as rice, 

maize, wheat, soy, barley and potato.12

While pangenomes aim to include the 

entire set of genes within a species, the 

so-called ‘super pangenome’ extends 

this concept further by also including 

the genomes of closely-related 

species.13 Initial projects are underway 

to compile super-pangenomes of rice,14 

maize,15 tomato16 and chickpea,17 among 

others. Super-pangenomes are hoped 

to be used to transfer valuable traits 

from wild plants to elite varieties using 

genome editing techniques.

Until recently, so-called ‘omics’ 

techniques could only be used at the 

level of cell clusters or entire plants. 

Although the data obtained using these 

techniques have significantly expanded 

our understanding of plant biology, the 

functions of rare cell types and low-

concentration molecules remained 

largely obscured due to the ‘dilution 

effect’. Now, new methods are making it 

2.2 Omics techniques now available for single cells
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Single-cell omics techniques also form 

an important foundation for the Plant 

Cell Atlas project.22 The project, running 

since 2019, aims to generate extensive 

data on the structure and organisation 

of plant cells.23 Experts from various 

disciplines, including genetics, cell 

biology, bioinformatics and imaging 

technology have been researching 

which types of plant cells exist and 

where and when certain molecules 

are present within them. The goal is 

to draw up a ‘molecular map’ which 

contains high-resolution temporo-

spatial information about the DNA, RNA, 

proteins and metabolites found in plant 

cells – akin to a Google Maps for plants. 

The results of this endeavour are viewed 

as an important resource for plant and 

breeding research. The first Plant Cell 

Atlas symposium in 2021 was attended 

by nearly 500 leading experts from 

academia, industry and government 

agencies, including employees of BASF, 

Bayer, Syngenta and Google.24

The large amounts of scRNA-Seq and 

other single-cell omics data generated 

by the Plant Cell Atlas project will in turn 

be used to train AI tools for NGT-based 

breeding.25

2.3 Google Maps for plants

possible to obtain omics data at the level 

of a single plant cell. The addition of rare 

cell types and molecules that this offers 

adds a new depth to the data which 

was previously lost during the mass 

measurement of cell material.

The results obtained from single-cell 

omics expand the range of big data 

available for training AI tools.18 Currently, 

the single-cell omics method used 

most commonly in plant biotechnology 

research utilises so-called ‘scRNA-Seq’, 

short for single-cell RNA sequencing 

techniques.19 These techniques enable 

the analysis of RNA molecules of 

individual cells using high throughput 

sequencing, opening up in particular 

new possibilities for understanding gene 

expression.20 Researchers at Nanjing 

University in China recently combed 

through existing scRNA-Seq studies on 

17 plant species and created a database 

comprising of data from around 2.5 

million cells.21
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Deep learning, artificial neural networks, 

language and diffusion models are 

currently undergoing rapid technological 

developments. These developments 

ensure that both the generative 

and descriptive performance of AI is 

constantly improving. As in many other 

areas, these advances are expected to 

bring profound changes both to the life 

sciences in general and specifically to 

plant breeding.

Deep learning is a general term for 

machine learning algorithms that consist 

of deep neural networks. Neural networks 

are computer programmes modelled on 

the way the human brain works, able to 

analyse huge amounts of unstructured 

data. Large language models and 

diffusion models, on the other hand, are 

variants of artificial neural networks. They 

form the AI architecture used in chatbots 

such as ChatGPT or image generators 

such as DALL-E and have been causing a 

furore worldwide since 2022.

The fact that diffusion and large 

language models are also causing a 

stir in the life sciences and NGT-based 

plant breeding can be attributed to two 

reasons: firstly, large language models 

can be trained with data from the 

scientific literature, functioning similarly 

to a novel form of research assistant. 

Secondly – and most importantly – 

rather than being trained with language 

texts, diffusion and large language 

models can also be trained using the 

vast amounts of DNA, RNA and protein 

data that have been collected through 

omics techniques in recent years. On 

one hand, the resulting AI tools are 

descriptive: like conventional deep 

learning algorithms, they can work with 

the ‘languages’ of biology and make 

predictions from them. On the other 

hand, they are also generative, able 

to generate functional DNA, RNA and 

amino acid sequences, including those 

that are new to nature. 

3. Generative AI for NGT

Google Scholar returns 498,000 results 

for a search with the keyword ‘genome 

editing’, 657,000 with ‘synthetic biology’, 

1.9 million with ‘plant breeding’ and 

2.2 million with ‘genetic engineering’. 

AI tools that sift through these vast 

amounts of data and analyse them 

according to the wishes of researchers 

are intended to further facilitate and 

drive forward NGT-based breeding 

projects. 

3.1 Large language models: research assistants for NGT plant 
breeding
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At least four such tools already exist: 

Open AI, the company behind ChatGPT, 

has developed a DNA programming tool 

that can help in the design of CRISPR 

projects and write programming code for 

DNA-related applications.26 The company 

also offers the so-called ‘Plant Breeding 

Optimiser’.27 This is a chatbot designed 

to improve breeding programmes and 

– according to the company itself – can 

also help to predict breeding results 

in NGT-based projects. At the end of 

April 2024, Google presented CRISPR-

GPT28 – an AI assistant developed in 

collaboration with US universities to 

facilitate and automate the planning and 

running of CRISPR-based experiments. 

PLLaMa29 has also been available since 

2024. The tool is a joint product of 

researchers at universities in China, 

Sweden and the USA, who have trained 

Meta’s LLaMa model with more than 1.5 

million articles from the field of plant 

sciences. An international committee of 

agricultural engineers, plant scientists 

and breeders is currently testing how 

well PLLaMa can answer questions.

In the future, an increasing number of 

text-based models will be developed to 

analyse the constantly growing body 

of scientific literature and research 

results, making the conclusions and 

developments more easily accessible to 

plant breeders.30

Proteins control important biological 

processes and determine what happens 

in plants at a molecular level. AI tools 

that can analyse proteins, simulate their 

interactions or redesign their functions, 

constitute powerful tools for synthetic 

biology and genetic engineering in 

plants. There is extremely high interest 

in generative AI. Although the practice 

of training diffusion and large language 

models with protein data only arose in 

the early 2020’s, the number of tools 

that have emerged is already becoming 

overwhelming. In addition to academic 

laboratories and numerous start-ups, 

tech companies have also become 

involved in their development. The 

two software giants Microsoft and 

Salesforce, the chip manufacturer 

NVIDIA, the internet companies Google 

and Meta as well as ByteDance, the 

company behind TikTok – all offer AI 

tools that, depending on the tool, can 

either understand protein sequences, 

generate them, or do both (Table 1). 

The most famous protein tool is Google’s 

Alphafold. Within a year, it mapped 

out the 3D structures of over 200 

million proteins31 – a feat that, without 

3.2 Generative AI trained on proteins
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powerful algorithms, would have taken 

researchers millions of years of work. 

According to the head of Google’s 

AI department, Demis Hassabis, the 

database of protein structures created 

with Alphafold has already been visited 

by over one million researchers from 

190 countries.32 In June 2024, Google 

Scholar already contains over 23,000 

publications citing the original article33 

on Alphafold published three years 

earlier in the scientific journal Nature.

Another protein tool named ESM-2, 

developed by Meta, has also been 

attracting a lot of attention. One factor 

drawing interest is its speed, which is 

said to be 60 times faster than Alphafold. 

Another reason is the Metagenomic 

Atlas, a database created by Meta’s  

ESM-2 containing the structure of 

over 600 million microbial proteins.34 

Published in the journal Science in 2023, 

one year later in 2024 ESM-2 already has 

1,200 citations in Google Scholar.

In addition to Alphafold and ESM-2, tools 

primarily used to model the structure of 

proteins, more and more generative AI 

tools have recently emerged that can 

be used in the design of proteins.35,36,37  

These include models developed by 

private AI laboratories such as Chroma38 

from Generate Biomedicines, EvoDiff39 

from Microsoft or ProGEN240 from 

Profluent and Salesforce, as well as 

university-developed models such 

as RFdiffusion,41 ProtGPT242 and 

ForceGen.43 The diversity and rapid 

growth of models produced have led 

researchers to speak of an ‘explosion 

of possibilities.’44 The tools offer not 

only new ways of redesigning natural 

proteins into versions with optimised 

or entirely novel functions - they also 

enable the de novo design of proteins 

previously unknown in nature.

Many of the design tools are so novel 

that the necessary experimental 

data is not yet available to evaluate 

the performance of their algorithms. 

However, it is already apparent that they 

open up a new design space that goes 

beyond natural limits. The number of 

mathematically possible protein variants 

is close to 101300. This unimaginably 

large number, exceeding the number 

of atoms in the universe many times 

over, clearly also includes an extremely 

large proportion of functionless amino 

acid sequences. However, it is also 

conceivable that this huge design 

space harbours functioning proteins 

that do not exist in nature. Such ‘new-

to-nature’ constructs are of particular 

interest for researchers in the field of 

molecular plant breeding.
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Table 1: AI tools (co)developed by tech companies for structural analysis and/or 

protein design.

AI Tool Tech company Training data Year

Alphafold-245 Google > 170,000 protein structures 2021

Alphafold-346 Google Not published 2024

ESM-247 Meta 65m protein sequences 2023

EvoDiff48 Microsoft 45m protein sequences 2023

LM-Design49 ByteDance 45m protein sequences 2023

OpenFold50 Microsoft/NVIDIA > 170,000 protein structures 2024

ProGen51 Salesforce 280m protein sequences 2023

ProtTrans52 Google/NVIDIA 390b amino acids 2021

ProT-VAE53 NVIDIA 46m protein sequences 2023

The first large language models trained 

with huge amounts of DNA sequences 

and therefore able to simulate the 

‘language’ of genomes came into 

existence in 2021. DNABERT, Nucleotide 

Transformer, GenSLM, megaDNA and 

EVO - these are the peculiar names 

of a selection of the two dozen or so 

models that currently exist (Table 2). 

While protein models are concerned with 

the coding sequences in the genome, 

genomic models also include the non-

coding sequences and therefore also 

allow insight into the regulation of 

genes. This opens the door to entirely 

new possibilities for researchers.

To date, most genomic language models 

have been based on DNA sequences 

from humans and animals. However, as 

employees of Instadeep and BioNTech 

recently demonstrated, such models 

can also be used to analyse plant 

genomes.54

The existence of the first language 

models for RNA sequences should also 

not go without mention. Examples of 

3.3 Generative AI trained on genomes
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In June 2024, there are four models on 

Google Scholar that were specifically 

trained using plant DNA sequences. 

One of these is the Genomic Pre-trained 

Network (GPN). It originates from the 

AI laboratories of the University of 

California, where it was equipped with 

DNA data from Arabidopsis and seven 

other cruciferous plant species.59 GPN 

can be used to predict how individual 

mutations in regulatory sequences will 

affect the plant.

FloraBERT is also specialised in 

regulatory sequences. The 2022 model 

is a product of Inari, a start-up that 

creates genome-edited plants (see 6.1).60 

The model’s training data are promoter 

sequences stemming from the genetic 

material of 93 plant species and 25 

different maize varieties. FloraBERT is 

designed to predict, in several different 

maize tissues, how changes in the 

promoter sequences affect gene activity.

The most powerful language model for 

plant genomes to date is the Agronomic 

Nucleotide Transformer, or AgroNT for 

short. It was developed as a collaboration 

between the AI forges of Google and 

Instadeep. The internet company and 

the AI company joined forces in 2022 

to develop a computer model for the 

genome editing of plants that would 

enable the simulation and evaluation of 

individual changes in a desired region 

of the genome. The model, published 

at the end of 2023, was trained using 

10 million genome sequences from 

48 plant species.61 To demonstrate its 

performance, the model was used to 

simulate more than 10 million mutations 

in the cassava genome and predict how 

each one would affect gene activity in 

the plant. As the developers highlighted, 

modelling the effects of so many 

mutations would be almost unachievable 

through experiments on plants and  

would be essentially impossible in nature.

The fourth language model for plant 

genomes is PlantCaduceus, a model 

trained on genetic data from 16 plant 

species, presented in the USA in July 

2024 - shortly before the completion of 

this report.62

3.3.1 GPN, FloraBERT and AgroNT – the first language models for plant 
genomes

these are CodonBERT55 from Sanofi 

or ERNIE-RNA56 and scGPT57 from 

Microsoft, all three of which have been 

trained with human RNA sequences. In 

the future, it is likely that large language 

models based on RNA sequences from 

plants will be developed. Models based 

on scRNA-seq data, such as scGPT, are 

seen as being particularly promising for 

the field of plant science and breeding.58
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3.3.2 Will AI-designed genomes soon be possible?

It is currently difficult to predict the 

extent to which genomic language 

models will influence synthetic biology 

and genome editing. A number of 

articles on these models are currently 

only available on preprint servers such 

as bioRxiv and arXiv and are therefore 

not yet peer-reviewed. In addition, 

experimental data that could be used 

to assess the actual performance of the 

algorithms is often lacking. 

However, regarding their use as tools for 

the functional annotation of genomes 

and as predictive models, it is already 

clear that the large language models are 

likely to outperform previous AI tools.63 

According to Instadeep, genomic models 

may also be suitable for modelling 

proteins and therefore be a good starting 

point for the construction of multimodal 

models for biology (see below).64

Large language models trained 

with microbial DNA sequences also 

demonstrate the potential that genomic 

AI tools could have. At the end of 2023, 

a researcher at Harvard University 

presented megaDNA - a model based 

on DNA data from bacteriophages.65 As 

megaDNA can be used to generate new 

sequences up to 96 kilobases in length 

with the functional structure of phages, 

the model paves the way for the de novo 

design of entire phage genomes. The AI 

company Together AI and the privately 

funded Arc Institute are also discussing 

the design of new genomes. Together 

with university institutes, the two have 

developed EVO, a model based on 300 

billion DNA bases from 80,000 bacterial 

genomes and millions of phage and 

plasmid DNA sequences.66 EVO is not 

only capable of generating sequences 

for small molecules such as non-coding 

RNA, but can also code DNA sequences 

up to 650 kilobases in length. According 

to the developers, EVO has the potential 

to generate sequences on the scale of 

entire microbial genomes.

Table 2: Examples of generative AI tools trained on genomes.

AI tool Company/University Training data Year

AgroNT67 
Instadeep  
& Google

10 million sequences from geno-mes from 
48 plant species

2023

DNABERT68 
(multi-species 
version)

Northwestern University
> 32 billion bases from genomes from 135 
species (animals, fungi and bacteria)

2023
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As powerful as text, protein and 

genome-based language models are, 

it is already becoming clear that they 

could soon be replaced by even more 

powerful models. The keyword here is 

multimodality. While previous language 

and diffusion models are still restricted 

to working with a single type of data, AI 

companies are now working on models 

that can process multiple types of data.

At the beginning of May 2024, Instadeep 

and BioNTech presented ChatNT,  

a multimodal AI tool aiming to bridge 

the gap for the first time between a 

Conversational Agent trained with text 

data and a model trained with biological 

data.76 Although the newly developed 

chatbot is primarily aimed at medical 

research, applications in the plant 

biology sector are possible. According to 

Instadeep, ChatNT “signals a potential 

shift towards the creation of a truly 

universal, multimodal AI system for 

genomics”.77

At the end of June, shortly before this 

paper was completed, Instadeep and 

BioNTech presented the first multimodal 

AI architecture for connecting DNA, RNA 

and protein data.78

3.4 Multimodal tools - on the way to supermodels

AI tool Company/University Training data Year

EVO69 
Together AI  
& Arc Institute

300 billion bases from over 80,000 
bacteria and phage genomes

2023

FloraBERT70 Inari
Promoter sequences from 93 plant species 
and 25 maize varieties

2022

GenSLM71 NVIDIA & several unis
110 million prokaryotic gene sequences 
and 1.5 million SARS-CoV-2 genomes

2023

GPN72 University of California Genome sequences from 8 plant species 2023

Nucleotide 
Transformer73 

Instadeep  
& NVIDIA

Sequences from over 3000 human 
genomes and 850 genomes from animals, 
fungi and bacteria

2023

megaDNA74 Harvard University > 99,000 phage genome sequences 2023

PlantCaduceus75 Cornell University Genome sequences from 16 plant species 2024
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AI tools that can process text from 

scientific literature as well as genomics, 

proteomics, transcriptomics and 

metabolomics data could be especially 

interesting in plant breeding.79 They are 

being presented as pioneers of a new 

type of molecular plant breeding, which 

researchers call ‘Breeding 5.0’ or ‘data-

driven genomic design breeding’.80

A universal, multimodal AI system for 

NGT-based plant breeding could be 

coming soon. In early 2024, researchers 

from several Chinese universities 

envisioned a global CropGPT project, 

published in the journal Molecular 

Plant.81 In the publication they called for 

breeders, biologists, computer scientists 

and mathematicians worldwide to 

work together with biotech companies 

and breeding companies to develop a 

multimodal tool based on diverse omics 

data, with the aim of the project being to 

accelerate the development of AI-driven 

design breeding.

3.4.1 CropGPT for Breeding 5.0

AI is nothing new in NGT-based breeding 

research. If you type the keywords 

‘genome editing’, ‘plant breeding’ and 

‘deep learning’ into Google Scholar, you 

will find the first hits as early as 2017. 

Since then, interest in AI has been 

growing significantly. Between 2018 and 

2023, the number of hits with the above 

keywords increased thirteenfold (see 

Figure 2). This trend is likely to continue, 

as generative AI tools are considered 

ideal for convergence with NGT.

As a brief review of the literature shows, 

AI models in NGT-oriented breeding 

research have so far mainly been used 

to analyse genomic data, identify 

regulatory elements in the genome and 

make genome editing more precise 

and efficient. There are still hardly any 

publications in the literature that report 

on specific applications of the modern 

AI tools described in Chapter 3. Most of 

these tools have only become available 

after 2022 and are therefore too new 

to have contributed results published 

in breeding research. An exception 

are AI tools such as Alphafold from 

Google, which can be used to predict 

protein structures. As in other areas of 

biological research, they are increasingly 

becoming part of the ‘infrastructure’ 

in NGT-based breeding research, and 

several projects for AI-supported 

redesign of traits for crops can be found 

in the literature.

4. AI applications in NGT-based breeding research
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Figure 2: Annual hits on Google Scholar with selected AI and NGT search terms 
between 2014 and 2023.

NGT-based plant research and 

development today relies primarily on 

the CRISPR-Cas method. Anyone who 

uses CRISPR to edit plant genomes 

must not only know the sequence of 

the target region beforehand, but also 

know which changes are to be made, 

and at which position, to produce the 

desired trait. In addition, in order to 

ensure the efficiency and precision of 

the experiments, an optimal sequence 

for the guide RNA that determines the 

location of the double-break must be 

selected. AI tools are now available 

for all these tasks:82,83 algorithms help 

researchers to identify optimal targets 

for editing by analysing the genomic 

context, functional annotations 

and potential off-target sites. Other 

algorithms suggest optimal sequences 

for the guide RNA and which of the 

various CRISPR cutting enzymes might 

be the most suitable. These tools make 

genome editing with CRISPR more 

precise, efficient and successful. 

Some examples of such tools are listed 

in Table 3.
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Table 3: Examples of AI tools that increase efficiency and precision in the genetic 

modification of plants using CRISPR.

* Number of citations on Google Scholar on 29.6.2024

By far the most common form of 

intervention in the genome of plants 

using NGT involves switching off genes. 

The result is hundreds of plants with 

loss-of-function mutations. However, 

such loss-of-function mutations are 

often of limited value in breeding. 

Especially when it comes to generating 

quantitative traits that are influenced 

by several genes, so-called ‘knockouts’ 

reach their limits.90

So far, researchers have lacked tools to 

generate variation in quantitative traits. 

This could now change. This new trend 

is called quantitative trait engineering:91 

researchers no longer knock out genes, 

but instead control their expression 

by specifically modifying regulatory 

network sequences. Controlling gene 

expression should make it possible 

to influence complex quantitative 

traits.92,93,94 

Quantitative trait engineering is to be 

achieved with CRISPR-based base 

and prime editors. These tools can be 

used to precisely generate mutations 

at regulatory elements in the genome 

that lead to the desired level of gene 

4.2 Regulation rather than knockout: generating quantitative  
trait variations

Tool Year Scope of application Citations*

Plant-specific tool

CRISPR-P84 2014 49 plant species 701

CRISPR-P 2.085 2017 49 plant species 585

CRISPR-GE86 2017 > 40 plant species 326

CRISPR-Plant v287 2019 7 plant species 74

Tools also suitable for plants

CRISPOR88 2018 > 100 species 1413

CHOPCHOP89 2014 > 100 species 1292
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expression. Researchers intend to target 

cis-regulatory elements (CRE) such 

as promoters, enhancers or silencers 

that control transcription, as well as 

upstream open reading frames (uORF) 

that regulate translation.

Quantitative trait engineering is made 

possible largely thanks to AI. One of 

the tools available is iCREPCP, a deep 

learning-based platform developed at 

Huazhong Agricultural University in 

China.95 It is designed to find promoter 

sequences in plant genomes and make 

them accessible for genome editing. 

A second example, CAPE, developed 

by researchers from several Chinese 

universities, combines multiplex 

genome editing with an algorithm 

that predicts how edits in promoter 

sequences will affect gene activity.96 

There are also a number of tools used for 

identifying and editing uORF that can 

be used in plants, such as uORFSCAN, 

uORFlight and PsORF.97

AI tools are also being developed that 

can be used to generate CRE and uORF 

that are new-to-nature.98,99 Outside the 

field of plant biotechnology, a number 

of such AI tools already exist.100,101,102,103 

In June 2024 the PhytoExpr model was 

presented, a model created to design 

CRE for plants. Researchers at the 

National Maize Improvement Center in 

China have developed two algorithms 

for PhytoExpr: one for redesigning 

natural CREs for genome editing and 

one for designing artificial CREs for 

synthetic biology in plants.104

AI tools for predicting protein structures, 

such as Alphafold from Google or ESM-2 

from Meta, are considered particularly 

promising in NGT-based breeding 

research because they expand the 

possibilities for the development of 

‘designer’ plants.105,106 Although the tools 

have only recently become available, 

a number of publications can already 

be found in the literature in which 

researchers report how they intend to 

use the tools to create NGT plants.

In a recent study, for example, 

researchers used AlphaFold to simulate 

how the protease Pip1 in tomatoes 

interacts with the protease-inhibiting 

protein EpiC2B of the pathogenic 

fungus Phytophthora infestans.107 They 

found that two amino acids in Pip1 need 

to be changed to make the protease 

resistant to inhibition by EpiC2B. The 

aim is now to use CRISPR to edit the 

Pip1 gene accordingly and increase the 

resistance of the tomato to disease. 

4.3 NGT breeding with protein redesign
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In another study, researchers recently 

used Alphafold to redesign patatin,108 

a protein occurring naturally in 

potatoes. A new version of the protein 

was generated that, according to the 

AI, should improve the viscosity and 

nutritional properties of dough made 

from potato flour. Using CRISPR-based 

prime editors, researchers aim to create 

the AI-generated version of patatin in 

the genome of potatoes.

Further examples can be found in 

the literature: in maize, researchers 

are planning to use AI-guided protein 

design and genome editing to modify 

the architecture of plants so that they 

can grow closer together in the field.109 

in wheat, the baking quality is to be 

optimised by modelling the structure 

of storage proteins.110 The development 

of low-allergen plants is also a goal: by 

analysing the structure and function of 

allergenic proteins using AI, they want 

to use computers to determine which 

changes can reduce allergenicity while 

maintaining the nutritional value of 

the plants.111 Also a focus of research 

are protein kinases and phosphatases, 

enzymes that significantly influence 

plant growth and their interactions 

with the environment and pathogens.

Redesigning them with the help of AI 

could enable the development of edited 

plants that produce higher yields and 

are more resistant to pathogens.112 

Proteins that transport sugars are 

also considered possible candidates 

for optimisation, using AI tools such 

as Alphafold and genome editing 

to increase disease resistance.113 In 

addition, thanks to newly designed 

proteins, plants are being designed that 

have higher levels of photosynthetic 

activity114,115,116 or fix more carbon from 

the soils.117 Finally, NLR proteins and 

thus the immune system of plants 

are also targets for research.118,119 NLR 

proteins function like sentinels, with 

different protein variants capable of 

recognising different pathogens and 

triggering an alarm when they are 

attacked, causing plants to activate 

their defence systems. Using tools such 

as Alphafold or ESM-2, researchers aim 

to create new NLR variants that enable 

the plant to recognise pathogens that 

it previously overlooked. To do this, they 

plan to use the computer-based tools 

to determine the necessary changes 

in amino acid sequences required to 

expand the specificity of an NLR protein, 

before recreating them in the plant’s 

genome using genome editing. 
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4.4 SynEpi and epigenome editing

The agronomic traits of crops are often 

not only regulated genetically, but 

also epigenetically. Variability in the 

epigenome has so far hardly played a 

role in molecular breeding. However, 

with the use of AI and CRISPR-based 

tools, researchers hope to change this. 

In recent years, several algorithms have 

been developed that can be used to 

identify epialleles and predict changes 

in plant epigenomes.120,121,122  Alongside 

this, researchers have also used CRISPR 

to develop novel tools that can be used 

to specifically generate epialleles in 

plant genomes.123,124 So far, epigenome 

editing has been largely limited to 

model plants. However, researchers at 

the Jiangsu Co-Innovation Center in 

China believe that, with the help of AI, 

epigenome editing could in the future 

develop into a widely applicable and 

effective method of plant breeding.125

In 2022, researchers from the 

Chinese Academy of Agricultural 

Sciences presented a new breeding 

strategy which relies on AI-generated 

predictions and epigenomic editing 

tools. The strategy is called ‘Synthetic 

Epigenetics’, or SynEpi for short. It 

follows engineering principles and aims 

to alter or completely redesign the 

epigenetic systems of plants. The aim is 

to develop varieties that react in specific 

and predetermined ways when exposed 

to exogenous or endogenous triggers.126

AI is viewed as being a driving force 

behind the automation of biotechnology 

and genetic engineering, and can also 

ensure that processes in NGT-based 

plant breeding run more autonomously. 

While the first autonomous laboratories 

for research on genetically-modified 

microorganisms already exist, the 

first plant biotechnology automation 

projects are also beginning. At the 

end of May 2024, researchers at the 

University of Illinois presented FAST-

PB – a fast, automated and scalable 

high-throughput pipeline for plant 

bioengineering.127 It is now possible 

to automate the cloning of genes and 

genome editing of protoplasts and 

callus cells in the laboratory. The NGT 

company Cibus has also automated 

its workflows and now aims to use this 

to industrialise the genome editing 

of oilseed rape.128 Syngenta, in turn, 

has automated genome editing and 

transgene expression studies in maize 

and soybeans in order to accelerate the 

development of new varieties.129,130

4.5 Automation
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The large seed companies Bayer, BASF, 

Corteva and Syngenta have been 

collecting large amounts of omics data 

for many years. Using these data, they 

train algorithms for the selecting of 

genetic combinations in plants from 

conventional breeding techniques. The 

companies usually keep the specific 

tools with these algorithms under lock 

and key.131 Therefore, little is known 

about how the companies use AI 

models for their NGT-based breeding 

programmes. What is almost certain 

however, is that they are using such 

tools.132

The company Corteva is known to have 

its own generative AI tool for NGT-based 

breeding. The company used Google’s 

BigBird to develop it, a language model 

that can process DNA data. To use 

BigBird in its breeding programmes, 

Corteva supplied the AI with DNA data 

from 14 crop species, including canola, 

rice, corn, soy, wheat and barley. The 

result is a computer-based prediction 

tool that can determine how individual 

mutations in regulatory DNA sequences 

will affect gene activity.133

To supplement their AI expertise, these 

companies are also cooperating with 

other firms. For example, in June 2024 

Syngenta announced that it uses the 

generative tool AgroNT, developed by 

Instadeep and Google (see 3.3.1). Together 

with Instadeep, the agricultural company 

now wants to develop AI-developed 

traits for corn and soy.134 Syngenta is 

also working with Biographica, a startup 

founded in 2024 that develops state-of-

the-art AI techniques to identify “high-

value targets for gene editing” in crops.135

BASF and Corteva have both started 

collaborations with Tropic Biosciences, 

which has proprietary AI, working to 

develop genome-edited disease-resistant 

plants (see 6.2).136

Similarly, Bayer is using Evogene’s AI 

platform to identify sequences in the 

genome of corn that could be edited to 

engineer disease-resistance in plants.137 

In addition, through its impact investment 

unit Leaps by Bayer, Bayer is supporting 

the startups Ukko and Amfora, both of 

which use the combined power of AI and 

CRISPR to develop new plant varieties.138

5. AI, NGT and corporations 

5.1 AI applications in seed companies
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As providers of generative AI models, 

tech companies also play a role in R&D 

projects on NGT plants. Although the 

tools for protein analysis and design 

offered by Meta, NVIDIA, Google, 

Microsoft, Salesforce and ByteDance 

are not designed and manufactured 

specifically for genetic engineering-

based plant breeding, they can also be 

used for this purpose.

Using Alphafold, Google is not only 

active in the field of protein design, but 

also develops tools specifically for plant 

genetic engineering. These include the 

large language model AgroNT, developed 

jointly with Instadeep, which is used 

by Syngenta and other companies (see 

3.3.1 and 5.1). As early as 2021, Google’s 

Moonshot Factory X already filed a 

patent for an AI model designed to help 

discover interesting genes in plants 

and make recommendations on which 

genome edits will produce a desired 

trait.139

5.2 AI for NGT offered by tech companies

There are a number of small and 

medium-sized enterprises (SMEs) 

worldwide whose business models 

are based entirely or partially on 

the convergence of AI and NGT 

(Table 4). The strategies for utilising 

this convergence vary. There are 

companies such as Traitseq, Evogene, 

Instadeep, McClintock, Biographica and 

Computomics, which develop AI tools 

for NGT-based plant breeding and offer 

them to third parties. Companies such 

as Arzeda or Gingko Bioworks create 

traits for plant breeding companies 

using their proprietary AI. Ohalo, 

Amfora, Finally Foods, Plastomics and 

Hudson River Biotechnology, on the 

other hand, are SMEs using third-party 

AI tools to develop their NGT plants. 

And finally, there are the companies 

that have proprietary AI tools, usually 

developed with their own specific 

uses in mind, to produce their plant 

varieties. These companies include 

Inari, NeoCrop, genXtraits, Phytoform, 

Plantae Bioscience, TreeCo and Tropic 

Biosciences.

Companies in the latter group use 

their tools primarily for predictive 

modelling and hope to be able to 

develop NGT plants faster and more 

cost-effectively. According to the 

scientific journal Nature Biotechnology, 

they have the potential to break the 

dominance of agricultural companies 

6. AI applications in small and medium-sized enterprises
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So far, Inari has received the most 

investment money. Since its foundation 

in 2016, the US company has received 

around 530 million euros.144 Today, the 

‘SEEDesign Company’ not only has a 

proprietary base editor and a licence for 

multiplex genome editing of promoters, 

but also has FloraBERT (see 3.3.1), a 

generative AI tool that can be used to 

predict how mutations in promoters 

will affect the characteristics of a plant. 

Equipped with these tools, Inari aims 

to influence the gene activity in maize, 

soya and wheat in a way that leads to 

the plants producing a 10 to 20 per 

cent higher yield. Inari’s first plants - 

soya145 and maize146 with increased yield 

potential as well as a shorter variety 

of maize147 - have already been given 

the green light for cultivation by the 

relevant authorities in the USA. In 2025, 

the company plans to carry out field 

trials with edited, high-yield wheat at 

several locations in Australia.148 Inari is 

also carrying out field tests of a short-

growing maize in Belgium.149

Phytoform is also focussing on 

promoters and the regulation of gene 

activity. The start-up, based between 

London and Boston, also has developed 

its own AI tool, CRE.AI.TIVE.150 According 

to its own advertising, its algorithm 

is designed to determine the minimal 

changes in promoter sequences that 

can be used to achieve maximum 

effects in crops, thus “enabling 

unprecedented control over gene 

expression”.151

6.1 CRISPR AI start-ups for gene regulation

in the commercialisation of genetically 

modified plants.140 The fact that the 

companies could have a chance of 

competing with the seed giants in NGT 

plants is reflected in the money they 

receive from investment companies. 

According to data from the company 

databases Tracxn,141 Crunchbase142 and 

PitchBook,143 more than 900 million 

euros in venture capital has been 

channelled into SMEs combining AI with 

NGT since 2016.
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Table 4: A selection of small and medium-sized companies offering AI tools for NGT-

based breeding and/or using AI tools in NGT-based breeding.

Company Country Year* Use of artificial intelligence

Amfora US 2016
Uses McClintock’s algorithm to create ultra-high protein  
peas and soybeans using NGT.

Arzeda US 2008 Develops new traits for plants using AI protein design.

BellaGen CN 2020
Uses the DNA-cutting enzyme Cas-SF01, created using  
AI-driven protein design, for genome editing.

Benson Hill US 2012
Uses proprietary AI system CropOS to identify gene 
sequences conferring interesting traits.

Biographica UK 2024 Offers AI tools for NGT-based plant breeding.

Computomics DE 2012 Offers AccelATrait for identifying editing targets.

Evogene IL 2002 Offers GeneRator for identifying candidate genes.

Finally Foods IL 2024 Uses Evogene’s GeneRator for molecular farming plants.

genXtraits US 2022
Uses proprietary algorithm to identify DNA segments for 
editing that act as ‘dimmer switches’.

Ginkgo 
Bioworks

US 2008
Designs new proteins for breeding with proprietary tool 
Owl.

Inari US 2016 Uses generative AI FloraBERT for genome editing.

Instadeep UK 2014
Offers the generative model AgroNT (developed with 
Google) for genome editing.

Hudson River 
Biotechnology

NL 2015
Uses AccelATrait from Computomics to identify gene loci 
for genome editing.

McClintock US 2022 Offers AI tools for NGT-based plant breeding.

NeoCrop CL 2020 Uses proprietary AI prediction model for genome editing.

Ohalo US 2019 Uses AI from Google in its NGT-based breeding work.

NRGene IL 2010 Offers the AI tool GO-GENOME for genome editing.



28

Save Our Seeds    |    When chatbots breed new plant varieties

Company Country Year* Use of artificial intelligence

Phytoform Labs US 2017 Uses proprietary AI tool CRE.AI.TIVE for genome editing.

Plantae 
Bioscience

IL 2020 Uses AI-driven protein design for NGT-based breeding.

Plastomics US 2017
Transforms soybean chloroplast genome with genes 
discovered using Evogene’s GeneRator.

Qi Biodesign CN 2021 Created a base editor using Google’s Alphafold.

Traitseq US 2023 Offers AI prediction models for genome editing.

TreeCo US 2019 Uses a prediction model for genome editing of trees.

Tropic 
Bioscience

UK 2016
Uses proprietary GEiGS bio-compute tool to discover and 
mutate non-coding RNA genes.

Ukko US 2016
Uses proprietary AI platform to create novel gluten 
tolerated in coeliac disease for wheat breeding.

Viridian Seeds IE 2021 Uses AI for genome editing of legumes.

Wild Bioscience UK 2021 Uses proprietary AI for gene identification in wild plants.

*Founding year of company

GenXtraits is another company 

focussing on the fine-tuning of 

gene activity. Founded in the USA 

in 2022, it claims to have a portfolio 

of intellectual property focussing 

on key regulatory elements in plant 

genomes.152 Unlike Inari and Phytoform, 

however, genXtraits does not work 

with promoters but with uORFs. In 

order to identify these elements, which 

genXtraits calls ‘dimmer switches’, in the 

genetic material of plants, the company 

has developed a specialised AI tool.153 It 

intends to alter the activity of the uORFs 

discovered with this tool using NGT.
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GEIGS, which stands for ‘Gene Editing 

Induced Gene Silencing’, is the name 

of an unconventional method in NGT-

based plant breeding. The patent for 

GEIGS belongs to Tropic Biosciences.154 

The British start-up combines genome 

editing with RNA interference (RNAi): 

with the GEIGS platform, genes coding 

for siRNA or miRNA can be edited in 

such a way that the silencing functions 

of the RNAs are directed towards new 

targets - such as genes from insects 

and fungi or even the plant’s own 

genes. For this purpose, Tropic uses the 

company’s own AI, GEIGS-BioCompute. 

The tool analyses the genomic data of 

a plant and uses it to predict where in 

the genome the smallest changes need 

to be made in RNAi genes to achieve 

the desired trait. The ability to redirect 

silencing functions using AI-driven 

genome editing has been met with 

great interest. Tropic has joined forces 

with BASF and Corteva as cooperation 

partners (see 5.1) and has received over 

70 million euros in venture capital since 

its foundation in 2016.155

6.2 Plant breeding with AI & RNAi & CRISPR

Ohalo is similarly popular with 

investment companies. The US start-

up, founded in 2019, is said to have 

already raised around 100 million 

euros towards the breeding of new 

plant varieties using NGT and AI from 

Google.156,157 It is not known exactly 

which AI tools Ohalo uses: the company 

talks about predictive models used to 

find out which crosses, out of hundreds 

of thousands or millions of possible 

combinations, lead to plant varieties 

with the desired characteristics. Ohalo 

has already received the green light 

for the cultivation of two varieties of 

potato plant in the USA: one called 

RedVin, which can be cold-stored 

without it sweetening,158 and the other 

for a potato with more beta-carotene 

in the tuber.159 At the end of May 2024, 

the company presented its ‘boosted 

breeding’ technology, which aims to 

“accelerate evolution to unlock nature’s 

potential”. In the patent-pending 

technology,160 Ohalo uses CRISPR-based 

ribonucleoproteins to cause the germ 

cells of plants to retain their genome 

in its entirety rather than halving it as 

usually happens. This results in so-

called ‘clonal germ cells’, which have a 

double set of chromosomes. When two 

of these germ cells fuse together, the 

result is offspring that have 100 per 

cent of the genes of each their parent 

6.3 AI from Google and ‘boosted breeding’
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plants instead of the normal 50 per 

cent from each. According to Ohalo, 

the production of such polyploid plants 

offers the possibility of “combining 

characteristics in boosted plants that, 

through conventional breeding, would 

either take thousands of years to 

combine, or would not combine at all”.

The results from TreeCo show why 

AI-based prediction models are of so 

much interest to companies. The US 

company is working on genome-edited 

poplar trees that produce less lignin and 

should therefore make paper production 

easier. To this end, it has developed an 

AI tool based on decades of forestry 

biotechnology studies. The tool can be 

used to predict how changes in the 21 

genes involved in lignin synthesis will 

affect the wood composition, growth 

rate and other traits of the trees.161,162 

As the tool shows, more than 69,000 

Using AI to tap into the genetic diversity 

of wild plants for NGT-based plant 

breeding - that is the goal of Wild 

Bioscience. Founded in England in 

2021, the company has an AI tool that it 

uses to search sequenced genomes of 

wild plants for variations in genes that 

it considers interesting for breeding 

editing strategies could be considered 

for editing the 21 genes. Using practical 

experiments to determine the best 

strategies would therefore be too time-

consuming - the AI tool, on the other 

hand, searches for the best strategies 

using a computer simulation. The 

company decided to use multiplex 

genome editing to experimentally 

generate only the seven most promising 

combinations of gene edits in the poplar 

genome.163 In the greenhouse, some of 

the poplars genome-edited in this way 

contained up to 49 per cent less lignin.

climate-robust varieties. Wild Bioscience 

then transfers these variants by making 

“small changes to the genetic makeup 

of crop plants”. By widening the search 

to the genomes of wild plants, the start-

up has access to a new range of genetic 

source material that is much wider than 

previously available.164

6.4 Simulation of over 69,000 editing strategies

6.5 Searching through the genomes of wild plants
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In addition to the companies mentioned 

above that use genome-based AI tools, 

there are also a number of companies in 

the field of NGT plant breeding working 

with protein design tools.

One of these companies is Arzeda. It 

calls itself ‘The Protein Design Company’ 

and uses generative AI to develop 

proteins for everything from enzymes 

for industry to traits for plant breeding. 

The company’s projects include, for 

example, designing an improved version 

of Rubisco,165 the protein that plants 

use to fix C02 from air and thus to draw 

carbon into the food chain. Arzeda also 

has its sights set on a plant enzyme 

that can break down a widely used 

herbicide.166 According to Forbes, the 

manufacturer tests 10,000 designer 

proteins per week,167 through which it 

claims to be able to “go beyond what 

nature has given us”.168

Another company claiming to be able 

to exceed the limits of natural evolution 

is Gingko Bioworks. Like Arzeda, 

the Synbio company offers the AI-

controlled development of proteins that 

can be used as traits for crop plants. 

Its generative tool for this is called 

Owl.169Gingko aims to use it to customise 

the activity and specificity of proteins.

“We accelerate nature’s evolution 

beyond what was imaginable before, 

dramatically shortening the path to 

healthier, more sustainable plant-

centric food”, writes Plantae Bioscience, 

a company founded in Israel in 2020, 

on its website.170 To achieve this 

acceleration, it uses AI-supported 

protein design and genome editing: 

first, it uses Google’s Alphafold and 

the AI tool FuncLib to design new 

variants of existing plant proteins on the 

computer. It then engineers the amino 

acid sequences determined in this way 

into the genetic material of the plants 

through genome editing. With this AI-

CRISPR combination, Plantae Bioscience 

aims to develop plants suitable for 

vertical farming that are smaller, grow 

faster, flower synchronously and thrive 

despite low light conditions. 

Another company working with protein 

design tools and CRISPR is Ukko.171 

Supported by funding from Leaps by 

Bayer, the company is pursuing the 

goal of redesigning plant proteins that 

can trigger food intolerances.172 Ukko’s 

AI-supported platform aims to make it 

possible to modify pathogenic proteins 

so that they become tolerable without 

losing their other properties. Ukko plans 

to use genome editing to implement the 

changes in protein sequence deemed 

necessary by the platform into the 

genetic material of the plants. 

6.6 Protein design for plant breeding
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Companies are not only working with 

AI-driven protein engineering on new 

traits in plants, but also on new tools for 

the genome editing of plants. BellaGen, 

for example, claims to be the first 

company in China to carry out genome 

editing in plants on an industrial scale. 

The company recently started using the 

two tools hfCas12Max** and Cas-SF0, 

which it developed itself with the help 

of AI. Both tools are variants of Cas12 - a 

class of nucleases that are interesting 

due to their small size but are less 

efficient in editing than other classes 

of Cas nucleases. Thanks to Google’s 

Alphafold and structure-guided protein 

engineering, BellaGen has turned Cas12 

enzymes into efficient tools.173,174 A first 

application took place in soya: Cas-SF01 

was used to edit soya plants so that they 

develop larger seeds175 and to engineer 

varieties to be resistant to the herbicide 

flucarbazone.176

Qi Biodesign is another Chinese start-up 

that has developed a new NGT tool using 

AI. Together with several university 

research institutes, the company  

searched the InterPro protein database  

for proteins that have similar sequences  

to deaminases. These are enzymes that 

can be fused with Cas nucleases to form  

a base editor. Qi Biodesign then used 

Alphafold to select the proteins considered 

to have the most promising structures 

from the proteins found. The result was a 

base editor with which, for the first time, 

C-G base pairs can be converted into T-A  

base pairs in the genetic material of  

soya.177 Previously, soya was one of the  

plant species in which this edit, for 

unknown reasons, was not possible.

6.7 Start-ups with self-made NGT tools

It should not go without mentioning 

here that advances in AI can also 

influence the goals of genetic plant 

breeding. For example, to simplify 

the digitalisation and automation of 

agriculture, there are proposals to 

genetically modify plants so that they 

send out signals that can be interpreted 

by AI-controlled agricultural machinery 

such as robots or drones.178,179 

Innerplant is one of the companies 

already developing such ‘robot-ready 

crops’.180 The company equips soya, 

maize, tomatoes and cotton with genes 

coding for fluorescent substances, with 

which the plants can signal when they are 

under attack from pests. In partnership 

with John Deere and Syngenta, 

Innerplant aims to develop a system 

that combines plants, equipment and 

6.8 First start-ups with robot-compatible plants



33

Save Our Seeds    |    When chatbots breed new plant varieties

In July 2023, the European Commission 

submitted a proposal to the European 

Parliament and the Council of the 

European Union to deregulate 

genetically modified plants that are 

produced by targeted mutagenesis, 

cisgenesis, or a combination of the 

two techniques and do not contain 

any genetic material from outside 

the breed’s gene pool.186 The proposal 

distinguishes between two categories 

of genetically modified plants (GMPs), 

depending on the extent of the genetic 

modifications: NGT1 plants, which 

contain up to 20 targeted changes in 

their genome (see section 7.3), and 

NGT2 plants, which have more than 

20 changes. The EU Commission 

assumes that the risk profiles of NGT1 

plants and conventionally bred plants 

are comparable and proposes that 

NGT1 plants be exempted from the 

requirements of GMO legislation and be 

subject to the same regulations that 

cover conventionally bred plants. NGT2 

plants, on the other hand, should remain 

within the regulatory scope of GMO 

legislation.

To enable the EU Parliament and Council 

to have a well-informed discussion, 

the EU Commission has published an 

impact assessment, case studies from 

the Joint Research Centre (JRC), work 

by the European Food Safety Authority 

(EFSA) and the results of a stakeholder 

survey. However, not explored in these 

documents, and therefore also not 

7. Generative AI and regulation of NGT1 plants

resources as follows: satellites recognise 

the stress signals from Innerplant’s 

plants and guide tractors, equipped 

with fluorescence detectors by John 

Deere, to the affected fields, where they 

spray Syngenta pesticides in a targeted 

manner.181 In 2023, Innerplant was given 

the green light for three plants in the 

USA: for Innersoy,182 which emits signals 

in the event of pathogen infestation, 

and for a soya183 and a tomato,184 which 

produce fluorescent substances needed 

to calibrate the remote sensing devices.

The US company Insignum AgTech is 

also developing signalling plants. Unlike 

Innerplant, however, it does not use 

genes from other species. Instead, it 

regroups genes that are already present 

in the genome, so that plants react to 

an external trigger with colour changes. 

For example, Insignum has developed a 

maize that produces purple anthocyanin 

at the site of infection when attacked 

by pathogens - a dye that can be 

recognised by AI-controlled agricultural 

machinery. The robot-ready maize was 

released for cultivation in the USA at the 

end of 2023.185
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considered in the ongoing political 

debate on the regulation of NGT plants,  

is the convergence of NGT and generative 

AI, as it is currently taking place in 

the NGT laboratories of the world. The 

convergence of these technologies only 

gained momentum after most of the EU 

Commission’s NGT activities had been 

completed or were nearing completion. 

As this convergence is thought to have 

great potential to change NGT-based 

breeding, it is all the more pressing to 

proactively discuss and clarify which 

regulatory issues and safety concerns it 

brings with it, before a new law is passed. 

This is especially important due to the 

proposal that precautionary measures 

such as risk assessment and traceability 

be waived for NGT1 plants.

In the following sections, we will 

first list some general aspects that 

should be considered in a proactive 

regulatory discussion. We will then 

use a scenario to present and explore 

regulatory questions arising from the 

convergence of NGT and generative AI 

in the production of NGT plants. After 

that, we will focus on NGT1 plants: first, 

we will present the new design space 

that would be available for the AI-

controlled production of NGT1 plants 

under the proposed legislation. After 

that, exploring the aspects of risk 

assessment, traceability and labelling, 

we will present why the convergence 

of NGT and generative AI should be 

considered in the regulatory debate.

The following are some general aspects 

to be considered when planning the 

governance of the convergence of NGT 

and generative AI. They largely reflect 

So far, modifying plants with NGT 

has been reserved for highly trained 

professionals who are extensively 

trained in molecular biological 

techniques. Generative AI is likely to 

aspects found in the literature on the 

possible risks of and concerns over 

the use of generative AI in science and 

technology.187,188,189,190,191

change this. Its models are becoming 

increasingly more sophisticated and are 

acquiring the expertise and decision-

making skills that were previously only 

available to experienced researchers.  

7.1 General regulatory aspects

7.1.1 Generative AI lowers the skill threshold
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Automation, AI-based research 

assistants, powerful computer 

simulations and design tools are 

increasingly turning NGT-based plant 

breeding into a data-driven process 

that produces more and more NGT 

plants at an ever-faster rate, which 

are then tested as possible candidates 

for new plant varieties in the natural 

environment. From the perspective of 

health and environmental protection, 

In the near future, chatbots could 

provide instructions and support for 

laypeople, thus making NGT plant 

breeding accessible to students, 

computer scientists, entrepreneurs or 

DIY biologists. These people will have 

neither the experience in dealing with 

GMPs nor a sufficient awareness of 

the acceleration and the associated 

productivity boost also give rise to 

concerns. This is because the increased 

pace and the sheer volume of possible 

candidates for the development of 

new varieties are likely to make it more 

difficult to identify and select those new 

plant varieties unexpectedly displaying 

properties undesirable for human, 

animal and environmental health during 

development.

biosafety issues. The loss of specialist 

skill in this area, in conjunction with 

the black box (7.1.4), hallucination 

(7.1.5) and possible data errors (7.1.6), 

raises concerns that NGT1 plants with 

undesirable or inappropriate properties 

may be created and released into the 

environment.

7.1.2 Generative AI increases productivity

Dozens of simple gene scissors 

and sophisticated base, prime and 

epigenome editors are already 

available for NGT-based plant breeding. 

Generative AI will greatly expand this 

toolbox. Startups such as BellaGen 

and Qi Biodesign are examples of 

how structural analysis tools like 

Alphafold can be used to create new 

CRISPR-based gene scissors and base 

editors (see 6.7). Powerful protein 

design tools will further increase the 

possibilities. In April 2024, NGT tools 

developed using large protein language 

models were presented for the first 

time: a base editor from Westlake 

University,192 and OpenCRISPR-1 from 

the startup Profluent.193 OpenCRISPR-1 

is particularly noteworthy. Firstly, the 

protein comes from a pool of millions 

7.1.3 Generative AI provides new tools
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of new, computer-designed CRISPR 

protein sequences that Profluent 

designed with ProGen. Secondly, 

OpenCRISPR-1 is a very novel protein: it 

differs from any natural CRISPR protein 

by at least 182 mutations and from the 

widely used SPCas9 gene scissors by as 

many as 403 mutations.

Genomic language models are also soon 

likely to contribute to the development 

of new forms of NGT tools. For example, 

EVO, a model trained with genetic data 

from bacteria, can generate sequences 

that are new-to-nature but nevertheless 

are designed to function like Cas9 gene 

scissors.194,195

Whether nucleases, deaminases, 

recombinases, transposases or 

methyltransferases – today, the toolbox 

of NGT plant breeding is still largely 

restricted to components that come 

from natural sources. Generative AI 

will not only help to redesign these 

‘natural’ NGT tools to make them even 

more powerful, but it could also give 

rise to a range of novel NGTs that 

facilitate multiplex genome editing, 

gene stacking, single sequence 

rearrangements, and chromosome 

remodelling.196 Thanks to generative AI, 

research and industry will have tools to 

manipulate plant genomes on an even 

larger scale than today.

Generative AI models often work as a 

‘black box’:197,198,199 they make predictions 

or recommendations without humans 

being able to understand exactly how 

and why the models came up with them. 

While this lack of transparency does 

not hinder the technological use of the 

AI models, it does limit the ability to 

evaluate them in terms of reliability or 

safety.

In sensitive areas such as NGT-based 

plant breeding, where the products can 

affect the health of many people and the 

environment, the lack of traceability and 

reproducibility of the results undermines 

trust in generative AI models. Therefore, 

ways must be sought to make future AI 

models transparent and comprehensible 

to the interested public and, in 

particular, to regulatory authorities. In 

addition, solutions must be found to 

ensure that human intelligence, control 

and governance remain integrated 

at critical points in the AI-driven 

production of NGT plants.

7.1.4 Black Box



37

Save Our Seeds    |    When chatbots breed new plant varieties

Alongside the black box, ‘hallucinations’ 

are also a cause for concern: generative 

AI models can produce results that 

often appear reasonable but are actually 

factually wrong or irrelevant.200 How 

often and in what contexts AI models 

‘hallucinate’ and how this can be 

prevented or reduced has yet to be 

determined. What is clear, however, 

is that the unquestioned production 

of false and irrelevant results is to be 

expected. The combination of black 

box and hallucination is particularly 

problematic where generative AI 

models make suggestions for extensive 

interventions in the genetic makeup of 

plants, and the modified plants are then 

released into the environment.

7.1.5 Hallucinations

The outputs and predictions of 

generative AI models always reflect 

the data used to train the models. 

If the training data contains errors 

or distortions stemming either from 

the underlying biological systems or 

from the human curators, they can 

be transferred to the model’s results. 

Furthermore, AI models lack an 

understanding of causality.  

They can correctly identify patterns 

and relationships in the data, but they 

cannot grasp what the immediate 

causes or mechanistic explanations for 

the identified relationships are. This lack 

of causal understanding ultimately limits 

the ability to anticipate possible side 

effects or malfunctions that may arise 

when implementing AI predictions into 

real-world applications.201

7.1.6 Data distortion and lack of logical understanding

Technological advances in both NGT 

and generative AI are currently taking 

place at a breathtaking pace. Managing 

this rapid technological change poses 

a challenge for the governance of the 

convergence of NGT and generative AI. 

In areas where NGT and generative 

AI are used together, authorities and 

legislators will need to constantly 

assess whether existing regulations 

can keep pace with rapidly changing 

technological possibilities. 

7.1.7 Speed and future-proofing
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7.1.8 Corporate power

Tech companies have immense 

power when it comes to developing 

generative AI. They have the necessary 

infrastructure, highly qualified 

personnel, access to powerful 

computers and huge cloud capacities, 

and the financial resources needed for 

the very costly production of generative 

models. 

Since SMEs and public academic 

institutions are rarely able to afford 

the high development costs, a large 

proportion of AI breakthroughs are in 

the hands of private corporations. A 

few tech giants can determine market 

trends, set standards, decide whether 

they disclose the codes of their models 

and dictate who, and under which 

conditions, can have access to the tools. 

What is more, they also have the power 

to influence ethical and regulatory 

discussions and thus also political 

decisions.202

With tech companies such as Meta, 

Google, NVIDIA, Salesforce and 

Microsoft now also developing 

generative AI models for life sciences, 

synthetic biology and NGT-based 

plant breeding, the question arises 

of whether and how corporate power 

influences the process. Do the goals of 

a company influence how their protein 

and genome-trained models work? 

How transparent, reproducible and 

comprehensible are the tech giants’ 

tools? What are the consequences if AI 

models for NGT-based breeding become 

increasingly large and only a few 

companies can develop the best and 

most powerful tools? What forms and 

possibilities of state control are needed? 

And what resources, expertise and 

powers of intervention should be given 

to national or international institutions 

to carry out these controls? A broad 

public debate on these issues is needed. 

So far, the discussion has only taken 

place behind closed doors.203,204

Many of the AI models from private 

companies mentioned in this paper are 

public. Google/Instadeep’s AgroNT, for 

example, is available on Hugging Face205 

and Inari’s FloraBERT is on Github.206 

However, it remains to be seen what 

exactly ‘public’ means for each of the 

individual models.

 A recent study by the Dutch Radboud 

University shows that the ‘open source’ 

label in the field of generative AI does 

7.1.9 ‘Open-washing’
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not always deliver what it promises.  

Two researchers there looked at how 

open, transparent and accessible 

chatbots and image generators from 

private companies actually are. The 

result: tech giants such as Google, 

Meta and Microsoft often describe their 

AI models as open source, but only 

disclose a few key pieces of information 

such as code or training data. In short, 

tech companies are doing ‘open-

washing’.207,208

In May 2024, Google received a lot of 

criticism from the scientific community 

when it presented Alphafold 3, the 

latest version of its revolutionary AI 

for predicting protein structures, in 

the journal Nature.209,210  Although 

Alphafold 3 is available on a public web 

server, its use is subject to a license 

limited to non-commercial use. What’s 

more, Google also refrained for the first 

time from making the computer code 

describing the progress of the model 

public. In addition to an outcry on social 

media, more than 1,000 researchers 

criticised the journal Nature in an 

open letter to the editors for accepting 

Google’s article without computer code, 

thus deviating from the standards of the 

research community.211

The development of generative AI 

models for NGT-based plant breeding is 

still in its infancy. It is not yet possible 

to say where it will lead. Stuart Smyth of 

the University of Saskatchewan recently 

predicted ‘Google Crops’ – yield-

optimised varieties designed with AI and 

created with CRISPR.212 The following 

scenario is based on this. It is intended 

to illustrate the regulatory issues that 

arise with the advent of generative AI 

models.

7.2 ‘Google Crops’ scenario

2027: Google has developed AgroNT into a multimodal model that not only 

understands the language of proteins and genomes, but also the legal 

conditions for breeding and growing NGT plants. Google offers its tool – let’s 

call it ‘The AI-Breeder’ – to breeding companies, which can fine-tune it with 

their own data. Syngenta has been working with AgroNT since 2024 and is 

now using The AI-Breeder to produce NGT1 oilseed rape for the European 

market. To do this, the company enters the genome sequences of its elite 

crop varieties, as well as data on the climate of the growing areas and the 

soil quality of the fields, into the tool and receives information on how to edit 
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The scenario raises questions that it 

could be sensible to discuss at the 

regulatory and political level before the 

planned deregulation of NGT plants: is 

it conceivable that generative AI tools 

are prone to error and make unwanted 

suggestions, the implementation of 

which could lead to edited varieties with 

undesirable effects on humans, animals 

or the environment? If so, should it be 

the companies’ own responsibility to 

decide whether or not to use reliable 

and safe tools? Are binding quality 

standards required for this? Should 

the companies themselves check that 

errors are detected and that no NGT1 

plants with undesirable effects leave 

the laboratories? Should companies 

be able to choose for themselves how 

much decision-making they hand over 

to an AI and at which points in their 

AI-controlled breeding process they 

rely on human intelligence, control 

and decision-making? In short, is the 

personal responsibility and self-control 

of SMEs and corporations sufficient, or 

is state intervention needed to make 

sure the tools and plants are safe using 

appropriate regulation? 

Another important question is how to 

determine whether an AI tool is reliable 

and makes safe suggestions. Does this 

require a step-by-step approach in 

which data are first collected on screen, 

then in the laboratory, in greenhouses 

and in controlled release experiments, 

and then submitted to authorities for 

evaluation? Or should companies and 

corporations figure it out on their own in 

the process of breeding, as would be the 

case under the proposed deregulation?

The following question is particularly 

important for this political and 

regulatory discussion: can a generative 

AI, with the design space legally 

available to it for designing an NGT1 

genome, design plants whose risk profile 

differs from conventionally bred plants?

these varieties using genome editing to simultaneously achieve high yields 

and remain within the boundaries of NGT1. An automated genome editing 

workflow implements the suggestions of The AI-Breeder. Without having to 

check for possible environmental or health effects beforehand, Syngenta 

then releases the edited oilseed rape varieties into the environment and 

tests their yields in several locations on a trial basis. Since Syngenta does not 

have to take any measures to limit its trials in terms of time and space, edited 

rapeseed escapes from the trial areas via seeds and also passes on its Google-

designed genes to other rapeseed plants and related wild species via pollen. 
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The design space available for the 

production of NGT1 plants under the 

European Commission’s proposal is 

defined in Annex 1 of the NGT draft 

regulation. It sets out the criteria for 

the equivalence of NGT1 plants with 

conventionally bred plants (Figure 3). 

If the criteria are met, equivalence 

applies even if the properties of the 

NGT1 plants are novel and do not occur 

in conventionally bred varieties of the 

same species.

The following lines demonstrate the 

possibilities that the planned design 

space theoretically offers for the AI-

controlled production of NGT1 plants: a 

generative AI can, for example, suggest 

the introduction of 18 new nucleotides 

for each of 20 different coding sites in 

the genome. Since this corresponds to 

six amino acids per site, it is possible 

to redesign several proteins. The AI 

can also suggest edits at 20 sites in 

the genome that act as CRE or uORF. 

This in turn allows it to design the 

regulatory network of a plant. The AI also 

has access to all DNA sequences from 

the gene pool of a plant species for its 

design proposals. It can, for example, 

select up to 20 genes from the super 

pangenome of a species and use them 

to suggest the formation of a new 

metabolic pathway. The design space for 

an AI becomes very large when it also 

exploits the possibilities of crosses. The 

EU Commission’s proposal envisages 

that crosses between two different NGT1 

plants will in turn lead to more NGT1 

plants, even if the offspring then have 

more than 20 genetically engineered 

modifications.213,214

7.3 The design space for NGT1 plants
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Figure 3: Criteria proposed by the EU Commission for the equivalence of NGT1 plants 

with conventional plants 

A NGT plant is considered equivalent to conventional plants when it 

differs from the recipient/parental plant by no more than 20 genetic 

modifications of the types referred to in points 1 to 5, in any DNA 

sequence sharing sequence similarity with the targeted site that can  

be predicted by bioinformatic tools.

Substitution or insertion of no more than 20 nucleotides;

Deletion of any number of nucleotides;

On the condition that the genetic modification does not interrupt an 

endogenous gene:

Targeted insertion of a contiguous DNA sequence existing in  

the breeder’s gene pool;

Targeted substitution of an endogenous DNA sequence with a 

contiguous DNA sequence existing in the breeder’s gene pool;

Targeted inversion of a sequence of any number of nucleotides;

Any other targeted modification of any size, on the condition that the 

resulting DNA sequences already occur (possibly with modifications as 

accepted under points (1) and/or (2)) in a species from the breeders’ 

gene pool.

a

b

1

2

3

4

5
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Under EU law, anyone who wants to 

release a genetically modified plant 

for experimental purposes or market 

it in the EU must first carry out a 

risk assessment. This requirement 

is designed to avoid any adverse 

effects of GMOs on humans, animals, 

the environment and biodiversity in 

advance. The EU Commission assumes 

that the risk profiles of NGT1 plants are 

the same as those of conventionally 

bred plants and therefore proposes that 

the requirement for a risk assessment 

of NGT1 plants under GMO legislation 

be waived. According to the EU 

Commission’s plans, there would only 

be a risk assessment for human health 

for NGT1 foods that are classified as 

novel foods and fall under Regulation 

2015/2283. 

The question of whether the use of 

protein- and genome-based generative 

AI models can lead to NGT1 plants 

that differ in their risk profile from 

conventionally bred plants has not yet 

played a role in the regulatory debate. 

However, in view of the potential 

attributed to these AI models, their 

inclusion in the discussion is advisable. 

To allow an informed decision about the 

pros and cons of a potential mandatory 

risk assessment to be reached, it should 

first be clarified what risk profiles NGT1 

plants might have, whose genome 

modifications have been proposed by  

an AI model.

Protein-based generative AI models 

are characterised by several abilities: 

they can predict protein structures, 

infer protein functions and predict 

both protein-protein interactions and 

interactions between proteins and 

small molecules. The AI models thus 

significantly improve the possibilities 

for the genetic engineering of natural 

plant proteins. For the regulatory 

debate, it would therefore be useful 

to take stock of the protein-based 

generative AI models and to assess the 

current and future redesign potential 

of AI models in the NGT1 design space 

(7.3). In particular, the question should 

be answered as to whether redesigned 

proteins with novel functions that 

give NGT1 plants characteristics with 

an increased risk profile are currently 

feasible or will in the future be feasible.

Genome-based generative AI models 

improve our understanding of genomes 

and provide insight into the way DNA 

elements interact at different levels to 

enable complex functions. They can 

help predict the effects of genome 

modifications and design functional DNA 

sequences. As with the protein-based 

models, the genome-based generative 

AI models should also clarify what 

7.4 Risk assessment of NGT1 plants
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design potential currently exists within 

the NGT1 design space and what might 

be expected in the future as AI models 

progress. In turn, this should answer the 

question of whether the AI models also 

enable the production of NGT1 plants 

whose risk profile is increased compared 

to conventionally bred plants.

A scenario that describes possible NGT1 

plants with an increased risk profile: the 

plant’s own microRNAs can be modified 

using genome editing in such a way that 

they prevent the formation of essential 

proteins by RNAi in harmful insects. With 

a genome-based generative AI model, it 

might be possible to search the genome 

of a plant variety for sequences that 

code for microRNAs. In this scenario, 

the model finds several such sequences 

and suggests for three of them the 

modifications necessary, in less than 20 

nucleotides in each of the three, in order 

to have a toxic effect on two different 

insect pests via RNA interference. 

The suggestions are implemented 

using genome editing, resulting in an 

NGT1 plant that produces six insect-

toxic substances and could not be 

developed in a practical time frame 

using conventional breeding methods. 

According to the EU Commission’s 

plans, no tests would be carried out 

on the NGT1 plant to determine the 

effect of the newly formed microRNAs 

on non-target insects before it was 

placed on the market, even though such 

undesirable effects are conceivable.215 

If, on the other hand, the newly formed 

microRNAs were to be sprayed on 

fields as a plant protection product, 

they would have to undergo a risk 

assessment under current EU plant 

protection product legislation.

Another scenario: a breeding company 

uses a genome-based generative AI 

model to determine how to edit the 

regulatory elements of the zmm28 gene 

in maize to increase the expression of 

the gene. The zmm28 gene encodes for 

a transcription factor that regulates the 

activity of genes involved in processes 

such as photosynthesis, nitrogen 

assimilation and growth-regulating 

hormone signalling. The breeding 

company implements the AI model’s 

suggestions and generates an NGT1 

maize with a higher grain yield. It is 

unlikely that a conventional breeding 

programme could produce exactly the 

same genome edits as were identified 

by the AI model. Overexpression of 

the ZMM28 transcription factor raises 

safety concerns:216 food and feed from 

NGT1 maize could produce more auxins, 

indolylacetic acid, indolylbutyric acid 

or nitrate than usual. These safety 

concerns would remain unresolved 

if there were no requirement for risk 

assessment for NGT1 plants.

A third scenario: a start-up commissions 

a genome-based AI model to search 
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a super pangenome, consisting of all 

publicly available genome sequences 

of oilseed rape and five of its related 

wild relatives, for sequences that 

could potentially code for antimicrobial 

peptides (AMPs). AMPs are part of the 

plant defence system against fungi, 

viruses and bacteria, as well as to some 

extent against insects and nematodes. 

Depending on their sequence and 

structure, AMPs are categorised 

into different types such as thionins, 

defensins, knottins, snakin, cyclotins 

or hevein-like peptides. The AI model 

provides the startup with two dozen 

sequences. The startup then has the 

corresponding genes synthetically 

produced, uses them to create several 

different cisgenic variants of oilseed 

rape and then tests the variants in 

the environment. One variant, which 

contains six potential AMP genes from 

four related wild species, proves to be 

particularly robust against harmful 

fungi, and the startup commercialises 

it as a variety for biodiesel production. 

Using conventional breeding methods, 

the variety could not be produced 

within a practical time frame. Questions 

that arise for the regulatory debate in 

this scenario: what information about 

the new variety should the startup 

be required to provide to the relevant 

authorities in the process of verifying its 

status as an NGT1 plant? Is it sufficient 

to state that the six inserted cisgenes 

are AMP genes according to the AI 

model? Or would the start-up have 

to clarify experimentally in advance 

whether the six proteins proposed by 

the AI model are actually AMPs? And is 

it justifiable for the start-up to release 

the cisgenic oilseed rape variant into the 

environment without a risk assessment, 

even though it is known that certain 

AMPs can also have a toxic effect on 

animals and humans?

Under current EU law, food that consists 

of or is produced from genetically 

modified plants must be labelled as 

GMO. This labelling requirement ensures 

freedom of choice at the retail and 

consumer level. The decisive factor 

for the labelling requirement is not the 

presence of foreign DNA in plant-based 

food. Rather, the decisive factor is 

whether genetic engineering techniques 

have been used to produce the plant. 

The EU Commission now wants to 

abolish this process labelling for NGT1 

plants. Even though classical genetic 

engineering methods are generally 

used today in the production of NGT1 

plants, the EU Commission no longer 

wants to make this process transparent 

and proposes in its draft legislation 

to exempt NGT1 plants from labelling 

7.5 Labelling of NGT1 plants
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requirements. The absence of foreign 

DNA and the assumed equivalence to 

conventionally bred plants are now to 

become the criteria that determine 

freedom of choice in the case of NGT1 

plants.

When the pros and cons of a labelling 

requirement for NGT1 plants were 

previously debated politically, the 

possible use of AI in the plant production 

process did not play a role. Now 

however, protein- and genome-based 

generative AI models cast a new light 

on the removal of process labelling and 

make it necessary to include AI in the 

deregulation debate.

Can the information as to whether 

generative AI was used in the 

production of NGT1 plants be essential 

for consumers to decide whether or 

not to buy the NGT1 product? Should 

consumers be informed if AI was used 

to design the genome of a tomato 

they want to buy? These are two of 

the questions that the possible use 

of generative AI models brings up for 

debate and that need to be brought 

into consideration politically. Important 

aspects here are the extent of AI design, 

the possible waiving of risk assessments 

for NGT1 plants (7.4), the black box (7.1.4) 

and the artificiality of the change created 

(new-to-nature) by the use of AI models. 

Traceability systems are a legal 

requirement for the commercial 

handling of GMPs in the EU. They ensure 

that GMPs and the products derived 

from them can be traced seamlessly 

throughout the entire manufacturing 

and distribution chain and in nature. The 

traceability requirement was introduced 

in order to enable the rapid recall of any 

defective products. This risk-prevention 

measure, a precaution stepping into play 

after the GMP comes onto the market, 

the EU Commission now wants to 

abolish with regards to NGT1 plants.

How the removal of the traceability 

requirement for NGT1 plants, whose 

modifications were proposed by an 

AI model, is to be evaluated has not 

yet been discussed by the relevant 

authorities, political institutions or 

the interested public, but should be 

included in the debate on the regulation 

of NGT plants. For example, it should 

be discussed whether black box (7.1.4), 

hallucinations (7.1.5) and data distortions 

(7.1.6) could not also lead to unsafe or 

defective NGT1 products and whether a 

recall option would be useful if AI-driven 

suggestions lead directly to modified 

genomes and the resulting plants can 

come onto the market without risk 

assessment and government oversight.

7.6 Traceability of NGT1 plants
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Glossary 
(created with the help of ChatGPT)

Antimicrobial proteins

Antimicrobial proteins (AMPs) are small proteins produced by plants to defend 

themselves against various pathogens such as bacteria, fungi and viruses. AMPs 

function against microorganisms by destroying their cell walls or membranes or by 

interfering with their metabolic processes. AMPs play an important role in the immune 

system of plants and can also be used in plant breeding to develop disease-resistant 

varieties.

Base editor

A base editor is a genome editing tool based on the CRISPR system. It allows the 

targeted modification of individual DNA bases in a genome without creating the 

double-strand breaks that are typical of the conventional CRISPR-Cas9 system. For 

example, a base editor can specifically convert a single base, such as a C-G base pair, 

into a T-A base pair. A base editor consists of a modified Cas protein that mediates 

DNA binding, but not DNA cutting, and a → deaminase component that causes the 

chemical conversion of one base into another.

Cis-regulatory element

A cis-regulatory element – CRE for short – is a DNA sequence that controls the  

activity of a gene by enabling or preventing the binding of → transcription factors 

and other regulatory proteins. These elements are usually located near the gene they 

regulate. CREs play a key role in gene expression by determining when, where and how 

strongly a gene is expressed. Examples of cis-regulatory elements are → promoters,  

→ enhancers and → silencers.

Deep learning

Deep learning is a subfield of machine learning based on artificial neural networks. It is 

a method by which a computer learns to recognise and understand complex patterns 

and relationships within large amounts of data. These neural networks consist of 

several layers (hence ‘deep’), through which data is processed and transformed step 

by step to identify patterns, features or decisions.
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Deaminase

A deaminase is an enzyme that catalyses a chemical reaction called deamination. 

This reaction removes an amino group (-NH₂) from a molecule. Deaminases play 

important roles in amino acid and nucleotide metabolism by enabling the removal of 

amino groups, which is essential for energy production and the breakdown of excess 

nitrogen compounds. Deaminases play an important role in genome editing because 

they can be used to create → base editors.

Descriptive artificial intelligence

Descriptive artificial intelligence refers to the use of → artificial intelligence (AI) to 

analyse and describe existing data. It can identify patterns in large data sets that are 

often difficult for humans to see. Descriptive AI helps to better understand existing 

data.

Diffusion model

A diffusion model is a type of generative model in → artificial intelligence designed to 

learn complex data patterns by gradually adding noise to a data structure and then 

reversing the process to restore that structure. These models learn how to reconstruct 

data from a noisy state, which allows them to generate new, realistic-looking data.

In a biological context, diffusion models could be used to capture and reconstruct 

patterns in genetic sequences, such as DNA or RNA, or to aid in the simulation of 

molecular processes. For example, they could be used to model the folding of proteins 

or to predict genetic mutations by learning the transition from a disordered to an 

ordered state and vice versa.

Enhancer

An enhancer is a segment of DNA in the genome that can boost the expression of 

one or more genes. Enhancers are a type of → cis-regulatory element. They work by 

binding to specific transcription factors or promoting the binding of activator proteins. 

Enhancers can be located far from the gene they regulate and still influence its 

expression. An enhancer is the counterpart to a → silencer. 
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Single-cell omics

Single-cell omics refers to a collection of techniques and methods that make it 

possible to obtain and analyse biological information at the level of individual cells. In 

contrast to conventional ‘bulk’ analyses, which collect data from a mixed population of 

cells and only provide average values, single-cell omics allows a detailed examination 

of individual cells. This can reveal differences between individual cells that would 

remain hidden in a bulk analysis.

Epiallele

Epialleles are genes or alleles that match in their DNA sequence but have different 

epigenetic modifications (e.g. methylation) and are therefore usually expressed 

differently.

Epigenome

The epigenome refers to the entirety of all epigenetic modifications to the DNA of an 

organism that regulate gene activity and gene expression without changing the DNA 

sequence itself. The epigenetic modifications include, among others, DNA methylation, 

histone modifications and the organisation of the chromatin structure. In contrast to 

the genome, which is relatively stable, the epigenome can be dynamic and change 

more extensively over the course of a lifetime.

Epigenome editing

Epigenome editing is a technique that aims to make targeted changes in the 

epigenome to control gene expression without altering the underlying DNA sequence. 

While traditional genome editing methods such as CRISPR/Cas9 directly modify the 

DNA sequence, epigenome editing focuses on the modification of epigenetic markers 

such as DNA methylation and histone modifications.

One of the techniques for epigenome editing relies on the use of dCas9, an inactive 

Cas9 enzyme that does not cut DNA. Enzymes that act as epigenetic modulators can 

be coupled to dCas9. For example, dCas9 can be fused with a DNA methyltransferase 

to specifically alter DNA methylations.
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Functional annotation

In genomics, functional annotation refers to the process of assigning certain biological 

functions to the identified sequences of a genome. A sequenced genome initially 

exists in the form of a long sequence of DNA bases (A, T, C, G). Functional annotation 

helps to interpret this sequence and to find out which sections of the DNA play which 

role in the organism.

Generative artificial intelligence

Generative artificial intelligence refers to the use of → artificial intelligence (AI) that not 

only analyses data but also creates (generates) new data. Examples of generative AI 

are models like ChatGPT, which can generate human language, or DALL-E, which can 

create images.

Large language model

A large language model (LLM) is a type of artificial intelligence designed to analyse, 

understand and generate complex sequences of symbols, characters or data. It 

is based on deep neural networks. The models learn patterns, relationships and 

structures within large amounts of sequential data, be it text or biological sequences 

such as those found in DNA, RNA or proteins. By training on extensive data sets, large 

language models can perform various tasks, such as predicting sequences, generating 

new sequences or classifying data. For example, ChatGPT relies on a large language 

model that can understand and generate human language.

Artificial intelligence  

Artificial intelligence (AI) refers to the development of computer systems capable 

of performing tasks that normally require human intelligence. This includes pattern 

recognition, natural language understanding, decision-making and learning from 

experience. In life sciences, AI encompasses machine learning techniques and other 

intelligent algorithms that can analyse complex biological data and are implemented 

in areas including genomics, proteomics and image analysis.

Machine learning

Machine learning is a branch of → Artificial Intelligence that involves developing 

algorithms and statistical models that allow computers to perform tasks without 
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explicit instructions. In machine learning, an algorithm learns from patterns in a large 

set of labelled data. Once trained, predictions or decisions can be made based on that 

learning in response to new and unseen data.

Metabolomics

Metabolomics refers to the analysis and identification of all metabolites in plant 

samples to better understand the biochemical processes and metabolic pathways 

in plants. The method can be used to gain insights into plant physiology, responses 

to environmental stress, the biosynthesis of phytochemicals, and also the effects of 

genetic engineering.

Methyltransferases

Methyltransferases are enzymes that transfer a methyl group (–CH₃) to a substrate. 

These substrates can be DNA, RNA, proteins or other molecules. Methylation by 

methyltransferases is an important biochemical process that can regulate the 

function of genes and proteins. For example, methylation of DNA segments by 

DNA methyltransferases can inactivate genes, which is a form of epigenetic gene 

regulation. In combination with the CRISPR/Cas system, methyltransferases can be 

used for targeted → epigenome editing

MicroRNA

Micro-RNA – or miRNA for short – is a short, non-coding and single-stranded RNA 

molecule that is an important component of RNA interference (RNAi). miRNAs are 

about 21-25 nucleotides long and involved in a variety of biological processes, such 

as cell growth and differentiation, apoptosis (programmed cell death) and stress 

reactions.

Multiplex genome editing

Multiplex genome editing refers to the simultaneous editing of several target sites in 

the genome of a single cell. Multiplexing is mainly achieved with the CRISPR system: 

by introducing several different guide RNAs (gRNAs) simultaneously with the Cas 

cutting enzyme into cells, changes are also made at several different sites in the 

genome. The method makes it possible to edit or switch off several genes at once.
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Neural network

A neural network is a model or programme for machine learning inspired by the way 

the human brain works. It consists of a large number of interconnected nodes – so-

called artificial neurons. The nodes are organised into layers: an input layer, one or 

more hidden layers, and an output layer. Neural networks rely on training data to learn 

and improve their accuracy over time. They can classify, cluster and generate data at 

high speed.

Nucleases

Nucleases are enzymes that can cleave nucleic acids, i.e. DNA or RNA. They can break 

specific bonds between nucleotides, causing the DNA or RNA strands to be cut. In 

genome editing, nucleases are crucial because they can specifically cut at specific 

sites in the genome, paving the way for various genetic engineering manipulations. 

The Cas9 enzyme of the CRISPR system is an example of a nuclease.

Omics techniques

Omics techniques are a group of techniques and approaches that aim to study the 

entirety (the ‘om’) of certain classes of molecules in cells, tissues or organisms. They 

enable the acquisition of comprehensive information about the structure, function 

and dynamics of biological systems. Omics techniques include, but are not limited to, 

→ genomics, → proteomics, → transcriptomics and → metabolomics.

Pangenome

The pangenome of a plant species encompasses, as far as possible, the entire set of 

genes that occur within that species. It consists of the core genome (the genes that 

are present in all individuals of the species) and the variable genome (the genes that 

are present only in some, but not all, individuals of the species).

Peptide

A peptide is a molecule consisting of a short chain of amino acids linked together by 

peptide bonds. Peptides can consist of only two amino acids (dipeptides) or of longer 

chains of up to about 100 amino acids (polypeptides). Peptides play important roles in 

biological processes such as signal transduction or defence reactions.
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Polyploid plant

A polyploid plant has more than two sets of chromosomes in its cells. Unlike diploid 

plants, which have two sets of chromosomes (one from each parent), polyploid plants 

often have three (triploid), four (tetraploid) or even more sets of chromosomes. 

Polyploidy occurs naturally and can arise through evolutionary processes, such as 

errors in cell division. Polyploid plants often exhibit increased robustness, larger cells 

and fruits, and higher genetic diversity, making them particularly valuable for breeding 

and agriculture.

Prime editor

A prime editor is a genome editing tool based on the CRISPR system that is used for 

precise editing of DNA sequences. Unlike the conventional CRISPR-Cas9 system, 

which creates double-strand breaks in DNA, the prime editor combines Cas enzymes 

that introduce single-strand breaks with a reverse transcriptase that can transcribe 

RNA into DNA. This combination enables the insertion, deletion or exchange of specific 

DNA sequences without double-strand breaks. The prime editor system uses a so-

called prime editing guide RNA (pegRNA): it not only guides the enzymes to the target 

site in the genome, but also contains the information for the desired change. The 

reverse transcriptase copies this information into the target site in the genome.

Promoter

A promoter is a → cis-regulatory element. It is located directly in front of the  

→ transcription start site of a gene and serves as a binding site for RNA polymerase 

and other → transcription factors to initiate transcription.

Proteomics

Proteomics refers to the analysis and characterisation of all proteins that are 

produced in a plant cell or tissue at a given time. The method can be used to 

determine the range of proteins, including protein modifications and interactions, 

which in turn provides insights into the functional biology of the plant, its reactions to 

environmental conditions or the effects of genetic engineering.
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Quantitative Traits

Quantitative traits are plant characteristics influenced by many genes (polygenic), 

which not only occur in distinct categories but show continuous variation. In contrast 

to qualitative traits, which are determined by few genes and show discrete, clearly 

identifiable classes (e.g. flower colour), quantitative traits are characterised by a broad 

scale of expressions.

Recombinase

A recombinase is an enzyme that mediates genetic recombination by recognising and 

cutting DNA strands at specific sites and rejoining them. Recombinases play a central 

role in the rearrangement of DNA sequences that occur in nature, for example, in DNA 

repair, in the exchange of genetic material between chromosomes or in the integration 

of viral DNA into the host genome. In genome editing, recombinases are used to 

specifically modify DNA sequences.

RNA interference

RNA interference – or RNAi for short – is a natural cellular process that regulates gene 

expression by degrading specific mRNA molecules or preventing their translation 

into proteins. RNAi plays a central role in gene regulation and serves as a defence 

mechanism against viruses.

scRNA-Seq data

scRNA-Seq data (Single-Cell RNA Sequencing data) come from a technology that 

allows measuring gene expression in single cells. Unlike traditional RNA-sequencing 

methods, which measure average gene expression across many cells, scRNA-Seq 

provides a detailed view of gene expression at the level of individual cells.

Silencer

A silencer is a DNA segment in the genome that can repress or reduce the expression 

of one or more genes. Silencers are one of the → cis-regulatory elements. Silencers can 

be located far from the gene they regulate and still influence its expression. A silencer 

is the counterpart of the → enhancer. 
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Small interfering RNA 

Small interfering RNA (siRNA) is a short, non-coding, double-stranded RNA molecule 

that is an important component of RNA interference (RNAi). siRNAs are about 20-25 

nucleotides long and are used by plants to regulate the expression of specific genes. 

Plants use siRNA to defend themselves against viruses.

Structure-guided protein engineering

Structure-guided protein engineering is a biotechnology approach that uses the 

three-dimensional structure of a protein to make specific changes to the amino acid 

sequence of the protein. The aim is to improve or modify the function, stability, binding 

affinity or other properties of the protein.

Super pangenome

A super pangenome of a plant species encompasses, as far as possible, the entire  

set of genes that occur within this species and its relatives. Super pangenomes 

usually correspond to → pangenomes at the genus level. They provide insights into  

the evolutionary history, domestication processes and genetic relationships within  

a genus.

Trait

Trait is a term used in genetic plant breeding. It refers to a specific property or ability 

of a plant, either specifically introduced by genetic engineering or naturally occurring. 

A trait can be, for example, resistance to certain pests, higher tolerance to herbicides, 

or improved nutrient composition. By inserting one or more genes that are responsible 

for the desired trait, researchers can introduce certain properties into plants in a 

targeted manner.

Transcription

Transcription refers to the process by which the genetic information in DNA is 

rewritten into a complementary RNA sequence. During this process, a specific section 

of DNA containing a gene is read by an enzyme called RNA polymerase and converted 

into mRNA (messenger RNA). This mRNA later serves as a template for translation, 

during which the information encoded in the RNA is translated into a protein. 

Transcription is the first step in gene expression.
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Transcriptomics

Transcriptomics is the study of all RNA molecules (in particular mRNA) in a plant 

cell or tissue. It is used to determine the pattern of gene expression under specific 

conditions, which makes it possible to study gene activity at different stages of 

development or in response to environmental factors.

Translation

Translation is the name given to the process by which the genetic information 

encoded in mRNA (messenger RNA) is translated into an amino acid sequence to form 

a protein. This process occurs in the ribosomes. During translation, the ribosomes 

read the mRNA sequence in groups of three nucleotides, called codons, adding the 

appropriate amino acids to a growing polypeptide chain. This chain then folds into  

a functional protein.

Transposase

A transposase is an enzyme responsible for the mobility of transposons (jumping 

genes or mobile genetic elements). Transposons are DNA sequences that can be 

moved from one location to another within a genome. The transposase recognises 

specific DNA sequences at the ends of a transposon, cuts them out of their original 

position and integrates them into a new location in the genome. In genome editing, 

transposases can be used to insert or remove genes from a genome in a targeted 

manner.

Upstream Open Reading Frame

An upstream open reading frame – uORF for short – is a short open reading frame 

(ORF) located upstream of the main ORF of a gene. A uORF can potentially code for a 

small peptide. → ORFs are important elements that help to fine-tune protein production 

by regulating → translation in response to cellular conditions and signals.
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